Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Oxygen Vacancy Driven Modulations in In2O3 Pyramidal Beaded Nanowires

Identifieur interne : 001732 ( Main/Repository ); précédent : 001731; suivant : 001733

Oxygen Vacancy Driven Modulations in In2O3 Pyramidal Beaded Nanowires

Auteurs : RBID : Pascal:12-0408977

Descripteurs français

English descriptors

Abstract

We present the growth of pyramidal beaded In2O3 nanowires by using hydrogen assisted thermal evaporation. Reduction reaction at the source produces different growth species having varying vapor pressures, which is responsible for the growth of oxygen deficient nanostructures. The number and nature of oxygen vacancies affect the growth rates of different planes and thus the ultimate nanostructure morphology. A detailed growth mechanism of the nanowires is proposed on the basis of thus created oxygen vacancies. Morphology of the synthesized nanostructures was interpreted using electrical and structural analysis (VESTA) software. Structural, compositional, optical and field emission (FE) characteristics were studied to further confirm the oxygen deficient growth. The phonon confinement model (PCM) was used to calculate the correlation length of defects. The regarded nanowires were found to be good field emitters with low turn-on fields, from 5.8 to 14.5 V/μm, and field enhancement factors from 1775 to 362, depending on cathode-sample distances. The experimental FE data were fitted with the Philips model and two-region field emission (TRFE) model, and the screening effect, absolute amplification factor and width of field enhancement region were calculated. Our approach to fabricate beaded nanowires may open new avenues to synthesize unique nanostructures for novel optoelectronic devices.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0408977

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Oxygen Vacancy Driven Modulations in In
<sub>2</sub>
O
<sub>3</sub>
Pyramidal Beaded Nanowires</title>
<author>
<name sortKey="Hafeez, Muhammad" uniqKey="Hafeez M">Muhammad Hafeez</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Micro and Nano Devices (CMND), Department of Physics, COMSATS Institute of Information Technology</s1>
<s2>Islamabad, 44000</s2>
<s3>PAK</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pakistan</country>
<wicri:noRegion>Islamabad, 44000</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1</s1>
<s2>Tsukuba, Ibaraki, 305-0044</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tsukuba, Ibaraki, 305-0044</wicri:noRegion>
</affiliation>
</author>
<author>
<name>TIANYOU ZHAI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1</s1>
<s2>Tsukuba, Ibaraki, 305-0044</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tsukuba, Ibaraki, 305-0044</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bhatti, Arshad S" uniqKey="Bhatti A">Arshad S. Bhatti</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Micro and Nano Devices (CMND), Department of Physics, COMSATS Institute of Information Technology</s1>
<s2>Islamabad, 44000</s2>
<s3>PAK</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pakistan</country>
<wicri:noRegion>Islamabad, 44000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bando, Yoshio" uniqKey="Bando Y">Yoshio Bando</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1</s1>
<s2>Tsukuba, Ibaraki, 305-0044</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tsukuba, Ibaraki, 305-0044</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Golberg, Dmitri" uniqKey="Golberg D">Dmitri Golberg</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1</s1>
<s2>Tsukuba, Ibaraki, 305-0044</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tsukuba, Ibaraki, 305-0044</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0408977</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0408977 INIST</idno>
<idno type="RBID">Pascal:12-0408977</idno>
<idno type="wicri:Area/Main/Corpus">001709</idno>
<idno type="wicri:Area/Main/Repository">001732</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1528-7483</idno>
<title level="j" type="abbreviated">Cryst. growth des.</title>
<title level="j" type="main">Crystal growth & design</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amplification</term>
<term>Computer software</term>
<term>Confinement</term>
<term>Evaporation</term>
<term>Experimental data</term>
<term>Field emission</term>
<term>Growth mechanism</term>
<term>Growth rate</term>
<term>Indium oxide</term>
<term>Iron</term>
<term>Low field</term>
<term>Morphology</term>
<term>Nanomaterial synthesis</term>
<term>Nanostructured materials</term>
<term>Nanostructures</term>
<term>Nanowires</term>
<term>Optoelectronic devices</term>
<term>Phonons</term>
<term>Structural analysis</term>
<term>Vacancies</term>
<term>Vapor pressure</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Lacune</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Mécanisme croissance</term>
<term>Evaporation</term>
<term>Pression vapeur</term>
<term>Nanostructure</term>
<term>Taux croissance</term>
<term>Morphologie</term>
<term>Synthèse nanomatériau</term>
<term>Analyse structurale</term>
<term>Logiciel</term>
<term>Emission champ</term>
<term>Phonon</term>
<term>Oxyde d'indium</term>
<term>Fer</term>
<term>Confinement</term>
<term>Champ faible</term>
<term>Donnée expérimentale</term>
<term>Amplification</term>
<term>Dispositif optoélectronique</term>
<term>In2O3</term>
<term>8107V</term>
<term>8107</term>
<term>8110A</term>
<term>8116</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Logiciel</term>
<term>Fer</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We present the growth of pyramidal beaded In
<sub>2</sub>
O
<sub>3</sub>
nanowires by using hydrogen assisted thermal evaporation. Reduction reaction at the source produces different growth species having varying vapor pressures, which is responsible for the growth of oxygen deficient nanostructures. The number and nature of oxygen vacancies affect the growth rates of different planes and thus the ultimate nanostructure morphology. A detailed growth mechanism of the nanowires is proposed on the basis of thus created oxygen vacancies. Morphology of the synthesized nanostructures was interpreted using electrical and structural analysis (VESTA) software. Structural, compositional, optical and field emission (FE) characteristics were studied to further confirm the oxygen deficient growth. The phonon confinement model (PCM) was used to calculate the correlation length of defects. The regarded nanowires were found to be good field emitters with low turn-on fields, from 5.8 to 14.5 V/μm, and field enhancement factors from 1775 to 362, depending on cathode-sample distances. The experimental FE data were fitted with the Philips model and two-region field emission (TRFE) model, and the screening effect, absolute amplification factor and width of field enhancement region were calculated. Our approach to fabricate beaded nanowires may open new avenues to synthesize unique nanostructures for novel optoelectronic devices.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1528-7483</s0>
</fA01>
<fA03 i2="1">
<s0>Cryst. growth des.</s0>
</fA03>
<fA05>
<s2>12</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Oxygen Vacancy Driven Modulations in In
<sub>2</sub>
O
<sub>3</sub>
Pyramidal Beaded Nanowires</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HAFEEZ (Muhammad)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TIANYOU ZHAI</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BHATTI (Arshad S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BANDO (Yoshio)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>GOLBERG (Dmitri)</s1>
</fA11>
<fA14 i1="01">
<s1>Center for Micro and Nano Devices (CMND), Department of Physics, COMSATS Institute of Information Technology</s1>
<s2>Islamabad, 44000</s2>
<s3>PAK</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1</s1>
<s2>Tsukuba, Ibaraki, 305-0044</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>4935-4943</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27261</s2>
<s5>354000509545450340</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>60 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0408977</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Crystal growth & design</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We present the growth of pyramidal beaded In
<sub>2</sub>
O
<sub>3</sub>
nanowires by using hydrogen assisted thermal evaporation. Reduction reaction at the source produces different growth species having varying vapor pressures, which is responsible for the growth of oxygen deficient nanostructures. The number and nature of oxygen vacancies affect the growth rates of different planes and thus the ultimate nanostructure morphology. A detailed growth mechanism of the nanowires is proposed on the basis of thus created oxygen vacancies. Morphology of the synthesized nanostructures was interpreted using electrical and structural analysis (VESTA) software. Structural, compositional, optical and field emission (FE) characteristics were studied to further confirm the oxygen deficient growth. The phonon confinement model (PCM) was used to calculate the correlation length of defects. The regarded nanowires were found to be good field emitters with low turn-on fields, from 5.8 to 14.5 V/μm, and field enhancement factors from 1775 to 362, depending on cathode-sample distances. The experimental FE data were fitted with the Philips model and two-region field emission (TRFE) model, and the screening effect, absolute amplification factor and width of field enhancement region were calculated. Our approach to fabricate beaded nanowires may open new avenues to synthesize unique nanostructures for novel optoelectronic devices.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07Z</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A10A</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A16</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Lacune</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Vacancies</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Evaporation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Evaporation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Pression vapeur</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Vapor pressure</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Taux croissance</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Growth rate</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Morphologie</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Morphology</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Analyse structurale</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Structural analysis</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Análisis estructural</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Logiciel</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Computer software</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Emission champ</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Field emission</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Phonon</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Phonons</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Fer</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Iron</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Confinement</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Confinement</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Champ faible</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Low field</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Campo débil</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Donnée expérimentale</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Experimental data</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Amplification</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Amplification</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Dispositif optoélectronique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Optoelectronic devices</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>In2O3</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8107</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>8110A</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>8116</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>317</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001732 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001732 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0408977
   |texte=   Oxygen Vacancy Driven Modulations in In2O3 Pyramidal Beaded Nanowires
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024